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ABSTRACT
Distributed system logs, which record states and events that oc-
curred during the execution of a distributed system, provide valuable
information for troubleshooting and diagnosis of its operational is-
sues. Due to the complexity of such systems, there have been some
recent research efforts on automating anomaly detection from dis-
tributed system logs using deep learning models. As these anomaly
detection models can also be used to detect malicious activities
inside distributed systems, it is important to understand their ro-
bustness against evasive manipulations in adversarial environments.
Although there are various attacks against deep learning models in
domains such as natural language processing and image classifica-
tion, they cannot be applied directly to evade anomaly detection
from distributed system logs. In this work, we explore the adver-
sarial robustness of deep learning-based anomaly detection models
on distributed system logs. We propose a real-time attack method
called LAM (Log Anomaly Mask) to perturb streaming logs with
minimal modifications in an online fashion so that the attacks can
evade anomaly detection by even the state-of-the-art deep learning
models. To overcome the search space complexity challenge, LAM
models the perturber as a reinforcement learning agent that operates
in a partially observable environment to predict the best perturbation
action. We have evaluated the effectiveness of LAM on two log-
based anomaly detection systems for distributed systems: DeepLog
and an AutoEncoder-based anomaly detection system. Our experi-
mental results show that LAM significantly reduces the true positive
rate of these two models while achieving attack imperceptibility and
real-time responsiveness.
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1 INTRODUCTION
Distributed system logs record states and events that occurred during
the executions of large distributed systems, such as big data systems,
online services, and scientific workflows. Usually printed in prede-
fined formats, these logs help system administrators examine internal
system states, identify anomalous behaviors (e.g., due to malicious
activities), and troubleshoot root causes. A large body of research
efforts have been dedicated to automating anomaly detection from
distributed system logs, using machine learning [21] and deep learn-
ing particularly [9]. However, although deep learning models have
shown superior performance in various application domains, there
have been many successful attempts at misleading their predictions
by injecting imperceptible modifications to inputs [1, 3, 40, 43].
This naturally raises the concern: can an attacker perturb distributed
system logs with minimal modifications to evade anomaly detection
based on deep learning models? If such perturbations are done when
an attacker is performing malicious activities, then he/she does not
have to worry about being caught by the anomaly detection system.

Evading anomaly detection from distributed system logs comes
with new challenges. Although there are various attacks against deep
learning models in domains such as natural language processing
(NLP) and image classification [2, 40, 45], none of these techniques
can be applied directly to evade system log anomaly detection due to
the following reasons. First, a key challenge in the generation of ad-
versarial examples is to ensure their imperceptibility, which differs in
different application domains. For example, in image classification,
an adversarial example should have as few pixels modified as possi-
ble. Due to the use of predefined templates, distributed system logs
have different syntactical structures, which constrains the attacker’s
action space in constructing imperceptible adversarial examples.
Second, as state-of-the-art log-based anomaly detection models for
distributed systems such as DeepLog [13] and AutoEncoders [19]
are capable of catching misbehavior in an online fashion, successful
evasion of these models must respond in real time to the incoming
log entries. The streaming nature of the problem dictates that an
attacker cannot look ahead for future log entries in the stream. The
attacker also cannot perturb a past log entry that has already been pro-
cessed by the anomaly detection model. Such real-time constraints
do not exist in image classification, for which a large body of adver-
sarial machine learning techniques have been developed [1]. Last
but not least, the temporal correlations inherent in distributed system
logs, which are commonly exploited by existing anomaly detection
techniques to detect suspicious patterns, significantly complicate
real-time evasion attacks because any modification action taken now
may alter the anomaly detection model’s prediction results for the
future log entries, which are not available for attack decision-making
at the present moment.
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Against this backdrop, in this work we explore the adversarial ro-
bustness of deep learning-based anomaly detection from distributed
system logs, which to the best of our knowledge, has not been in-
vestigated previously. We propose a real-time attack method called
LAM (Log Anomaly Mask) to perturb streaming logs with minimal
modifications in an online fashion so that they can evade anomaly
detection by even the state-of-the-art deep learning models. LAM
includes two key components, a surrogate model and a perturber.
The surrogate model is used to approximate the behavior of the op-
erational deep learning-based anomaly detection model in blackbox
or graybox attacks, or simply a duplicate of the operational model in
whitebox attacks. The perturber is trained offline to learn the best
policy in perturbing streaming logs with minimal changes to evade
the detection by the surrogate model. The attacker uses this policy
to make immediate decisions when performing a real-time evasion
attack against the operational anomaly detection model.

The real-time constraint of LAM requires us to overcome two
complexity-related challenges. First, even for a small number of log
keywords (shortened as logkeys), the combination of all possible
modifications in the attacker’s action space can grow exponentially,
making it hard to find in real time the optimal one that can evade
the operational anomaly detection model while ensuring that the
changes should be minimal (action space complexity). Secondly,
even if an algorithm can avoid exhaustive search of the entire action
space, the number of states and actions it uses to find an ideal policy
for evasion attacks should be manageable with limited computational
resources (state space complexity). To overcome the action space
complexity challenge, the perturber in LAM is modeled as a Rein-
forcement Learning (RL) agent that operates in a partially observable
environment. Given only the current and some past logkeys in the
data stream, the perturber learns an optimal policy to determine
which perturbation action should be taken at each time step. More-
over, the perturber addresses the state space complexity challenge
by training an LSTM (Long Short-Term Memory) deep learning
model to predict the best perturbation action from its observations
made in the current environment. In a real attack, the LSTM model
trained offline is used to assist the attacker with choosing the best
perturbation action for each new logkey encountered.

In a nutshell, our contributions can be summarized as follows:

• We propose a real-time attack method called LAM, to perturb
streaming logs with minimal modifications in an online fash-
ion. LAM considers three types of attacks – whitebox, gray-
box and blackbox - depending on the attackers’ pre-existing
knowledge and access to anomaly detection models.

• We overcome the search space complexity challenge by mod-
eling the perturber in LAM as a reinforcement learning agent
that operates in a partially observable environment to predict
the best perturbation action.

• We have evaluated the effectiveness of LAM on two state-of-
the-art log-based anomaly detection models shown to have
superior anomaly detection capability for distributed systems:
DeepLog [13] and an AutoEncoder-based anomaly detection
system [19]. Our experimental results show that LAM sig-
nificantly reduces the true positive rate of these two models
while achieving attack imperceptibility and real-time respon-
siveness.

• We have provided thorough discussions on the potential de-
fensive methods against our proposed attack on log-based
anomaly detection for distributed systems.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 provides a brief overview of deep learning based anomaly
detection models from distributed system logs. Section 3 formulates
the problem of our real-time evasion attack and presents the threat
model. Section 4 describes the architecture of LAM. The algorithm
details are given in Section 5. Section 6 presents our experimen-
tal results. Section 7 discusses potential defensive methods against
LAM. Section 8 presents the related work and Section 9 draws the
concluding remarks.

2 BACKGROUND
This section provides a brief overview of deep learning-based models
used for distributed system log anomaly detection that are targeted
in our attack, namely DeepLog [13] and AutoEncoder [19]. Our
attack focuses on circumventing anomaly detection at the session
level. A session is a collection of system logs grouped together by
some predefined criteria (e.g., logs generated from the same virtual
machine). Many log based anomaly detection systems that utilize
deep learning models as the anomaly detection component (e.g.,
DeepLog [13], AutoEncoders [4, 19], LogGAN [38], and Desh [11])
operate in two steps – a parsing step and an anomaly detection step.

Figure 1 shows the flow of the data stream in anomaly detection
systems based on distributed system logs. In general, the deep learn-
ing based anomaly detection model is deployed in a central location,
where the logs are collected and streamed to the anomaly detection
system from one or more locations over the network [32]. Examples
of such distributed logs are Hadoop File System logs (HDFS) [42]
and logs generated by scientific workflow systems [22].
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Figure 1: Anomaly Detection on Distributed System Logs with
N Distributed Nodes.

An anomaly detection system as illustrated in Figure 1 involves
multiple steps. First, the raw system logs are collected and parsed
into numerical values called logkeys. This step uses a predefined tem-
plate that directly maps a given log entry into a numerical value [41].
This template is generated either through automated log parsing tools
(e.g., Spell [12], Drain [20]) or is defined by domain experts. An ex-
ample of the logkeys parsed from the HDFS system log dataset [42]
is given in Table 1, where the logkey template has 29 logkey types.
In Table 1, the symbols (.∗) represent the parameter value positions
that are discarded when mapping log entries into logkeys.



Logkey System Logs
1 Adding an already existing block (.*)
2 (.*)Verification succeeded for (.*)
3 (.*) Served block (.*) to (.*)
. . . . . .
29 PendingReplicationMonitor timed out block (.*)

Table 1: Example logkeys for HDFS system logs
In the second step, the logkeys are grouped into sessions and

are fed into the anomaly detection model. Formally, we denote a
session as a univariate time series X = {x1,x2,x3, ...,xT }, where
T is the length of the session and xt (1 ≤ t ≤ T ) is a logkey. An
anomaly detection model processes each session using a fixed length
sliding window with a step size of 1. At each time instance t , the
input to the anomaly detection model is a fixed length sequence
seqt = {xt−m+1,xt−m+2, ...,xt } where m is the sliding window
size.

Anomaly detection models are usually trained on benign samples.
At the test time, the models detect the presence of anomalies based on
the deviation between the input and what it has learnt. The deviation
is captured either through the error or the loss of the model (e.g.,
AutoEncoders [4, 19]), or based on the inability of the model to
predict future variations in the time series (e.g., DeepLog [13]).
Given a deep learning model F , the entire session is marked as
anomalous if an anomaly occurs at any point in the session (i.e.,
there exists 1 ≤ t ≤ T such that F (seqt ) = True).

For the deep learning model F , we consider the following two
state-of-the-art models in this work.

Deeplog: Deeplog uses an LSTM model to detect anomalies in
system logs. LSTM is a specially designed deep learning architecture
that excels in learning temporal variations in data. At each time
instance t , the model takes as input a fixed length of sequence
seqt and learns the conditional probability of the next logkey xt+1.
DeepLog is trained on a benign set of samples. During the anomaly
detection, at each time instance, the model outputs д (a user defined
parameter) logkeys that are most likely to arrive next. If the logkey
that arrives in reality is not among the д logkeys, then an anomaly
flag is raised.

AutoEncoder: AutoEncoder is a Deep Learning model that ex-
cels at learning hidden representations of data. AutoEncoder has two
main components – an encoder and a decoder – which are gener-
ally Feed Forwarding Deep Neural Networks. The encoder learns
a hidden representation of an input, which is then fed back into
the decoder to reconstruct the input from the hidden representation.
To perform system log anomaly detection, AutoEncoder obtains
an input sequence of logkeys seqt at each time step, and tries to
reconstruct the sequence. The normalized error associated with this
reconstruction is used as an anomaly score. If the error is greater
than a fixed threshold, then an anomaly flag is raised. At the training
time, AutoEncoder learns to minimize its reconstruction error for a
set of benign samples with no anomalies.

3 PROBLEM FORMULATION AND THREAT
MODEL

In this work, we consider real-time evasion attacks against deep
learning-based anomaly detection systems developed to identify

suspicious activities from distributed system logs. Anomaly detec-
tion systems are often designed to operate in an online manner
[13, 22, 29, 44]. It is important to detect anomalous behaviors in
computer systems in a timely and online manner so that system
administrators can detect an ongoing attack or address a system
performance issue as soon as possible [13, 26]. As the size of the
parsed logkeys (numeric values) is much smaller than that of the raw
logs, to ensure that the logs are processed in real-time, it is more
efficient to send the logkeys than raw logs to the anomaly detection
model over the network.

Following adversarial evasion attacks in other domains [3, 40, 43],
we generate attacks that aim to perturb the input to anomaly detection
models such that anomaly samples would be mistakenly identified
as being benign. Similar to many existing evasion attacks, we aim
to fool the operational anomaly detection models (i.e., DeepLog
and AutoEncoder) without changing any internal parameters such
as trained weights. In such an attack, the objective is to identify the
modifications to the streaming logkeys such that it can be carried out
before the input arrives at the anomaly detection model deployed.
We consider imperceptibility to be a negligible percentage of the
logkeys in an entire session that need to be modified by a given
adversarial attack. Our intuition is that the fewer changes, the more
invisible the attack appears to the defender. Formally speaking, our
work is aimed at addressing the following question: given a target
anomaly detection model F and an anomalous logkey session X , is
it possible to perturb X in real time with minimal modifications so
that no anomaly is raised by model F throughout the session?

Assumptions and threat model: In anomaly detection, an anom-
aly raised at any location of a session makes the entire session
anomalous. When an attacker modifies e.g., the execution of a Vir-
tual Machine (VM), multiple places in the log session may change.
An anomaly detection model that can identify any of those changes
can successfully detect the malicious activity. Therefore, to success-
fully fool the anomaly detection model, multiple modifications may
be needed in the log stream. We assume that an attacker has the
ability to intercept or modify a logkey before the logkey is processed
by an anomaly detection model. We also assume that an attacker can
use a surrogate anomaly detection model to find the places where
anomalies are likely to be raised. We consider the following three
types of attacks:

• Whitebox attack: In a whitebox attack, the adversary has all
the information about the target model, i.e., the surrogate
model is an exact replica of the target model. This implicates
that any anomaly flag raised by the surrogate model should
match exactly the one raised by the target model.

• Graybox attack: In a graybox attack, the adversary knows
the hyper-parameters and the architecture of the target model,
but not its internal parameter values. In deep learning based
anomaly detection, models with the same architecture can
still have different weights because they are initialized with
different random numbers at the beginning of model training.

• Blackbox attack: In a blackbox attack, the adversary has no
information about the target model. The surrogate model
used by the adversary may be totally different from the target
model. Due to the discrepancy in model architectures, the
differences in anomalies identified between the surrogate



model and the target model should be more significant than
the other two types of attacks.

4 DESIGN OF LAM
In this section we present the high-level design goals of LAM. Figure
2 gives the architecture of LAM, which manipulates the parsed
logkey stream before it arrives at the anomaly detection model.
LAM observes the most recently parsed logkeys in the stream (i.e.,
the observation window), identifies possible anomaly situations, and
determines the logkey to manipulate. Once the logkey is identified,
LAM intercepts and perturbs the logkey.

LAM consists of two components: a surrogate model (SM) and
a perturber (P). The surrogate model plays two roles: to identify
attack entry points and to act as a reference model for the perturber.
The perturber learns to make adversarial modifications in the logkey
stream using the anomaly detection capability of the surrogate model.
If an anomaly is identified by the surrogate model, then the perturber
identifies the best possible adversarial action to perform (e.g., re-
placing/dropping a logkey or keeping the logkey as it is), in order to
minimize changes to the input stream and thus be able to keep up
with the speed of the incoming flow of logkeys. Note that the per-
turber does not require any knowledge about the internal parameters
of the surrogate model, rather it only needs an indication of whether
a sequence of logkeys is anomalous or not.

For a typical anomaly detection system, an anomaly flag raised
at any point in a session would result in the whole session being
marked as anomalous. Therefore, the adversarial modification of any
logkey should not adversely affect other correlated future logkey
values. Failure to adhere to this criterion may increase the probability
of an anomaly being raised in the future within the same session.
To address this issue, LAM models the perturber as a reinforcement
learning agent leveraging a deep learning algorithm that operates in
a partially observable environment to capture the future effect of the
current action.

4.1 Why reinforcement learning?
We propose a solution based on reinforcement learning (RL) to
overcome the high computational overhead of a brute-force search
approach. During the attack, at each time instance t , the RL agent
takes one of the two actions: (1) drop(xt ) which drops the last logkey
xt in the observation sequence O; (2) replace(xt ,x ′t ) which replaces
the last observed logkey xt inO with x ′t . If x ′t is the same as xt , then
it means that the logkey xt remains unchanged. Therefore, given L
logkey types, there are L + 1 possible perturbation actions at each
time step.

Although it is possible to try each of the L+ 1 actions at each time
step, this approach is inefficient. As an action taken at time step t
may affect the future actions, LAM must be able to forecast how an
action carried out in the present affects the future during the attack.
Assume that the sliding window used by the operational anomaly
detection model ism. As the number of possible actions at each time
step is L + 1 and an action taken at a time step will affect at leastm
future time steps, there are (L + 1)m combinations of actions to be
tried form time steps. The combination of all possible modifications
in an attacker’s action space can be large even for a small number of
logkeys, making it hard to find in real time the optimal action that

can evade the operational anomaly detection model. In LAM, the
RL agent learns an optimal policy during its offline training phase
by taking into consideration the future impact of current actions.
During the attack, the RL agent directly identifies an adversarial
action without trying all possible actions.

4.2 Why deep reinforcement learning?
One challenge in attacking anomaly detection models is the large
state space an RL agent needs to search during the training. The
anomaly detection models take a sequence ofm logkeys as an input.
Similarly, the RL agent uses a sequence of n logkeys as its state.
The number of states in the search space that the RL agent needs to
explore during the training is Ln , which grows exponentially when
n increases. Traditional reinforcement learning approaches use a
tabular method to store all the state transitions in order to identify
optimal actions resulting in desirable states. In our problem setting,
we need to identify actions that can convert an anomalous sequence
to a benign sequence. As the search space is large, the tabular method
requires a large amount of memory to store the state transition table.

To address this issue, we employ a Deep Neural Network (DNN)
to construct the RL agent. We treat the relationship between an
input sequence (the state) and a desirable adversarial action as a
non-linear mapping where the DNN is used as a blackbox function
approximator for the mapping. This removes the need to store the
state transitions in a tabular way. The RL agent is also model-free,
so the agent does not need to know how the logkeys are generated by
the actual system and hence does not need to individually compute
the transition probabilities for each state action pair.

4.3 Dealing with a large search space
Using DNN reduces the memory usage of RL agent, but does not
circumvent the issue regarding the need to explore a large search
space. To address this issue, we train the RL agent in an offline
setting to create adversarial perturbations on a sample of system
log sessions with known anomalies. We utilize two approaches in
our offline training phase to ensure that the agent explores the state
space sufficiently while learning an optimal policy. The first method
is called experience replay [35]. During experience replay, the agent
learns to perturb logkeys of anomalous sessions. The result from
each perturbing attempt may be different for each training iteration
(epoch). All perturbing attempts (successful or not) are valuable
experience that is used iteratively when updating parameters of the
DNN. At each training epoch, we store the information pertaining to
these perturbing attempts in a cyclic buffer called the replay memory.
When the RL agent updates its internal parameters, the agent trains
on a subset of its past experience stored within its replay memory.
Therefore in a given epoch, the agent learns from multiple cycles
of perturbing attempts made in the past, effectively learning more
about the state space.

As the second solution, we use a decay based approach that
gradually manages the exploration-exploitation in reinforcement
learning [36]. The RL agent must explore a sufficient portion of the
search space while ensuring exploiting the best actions that result in
desirable states. Exploitation without exploration may result in the
RL agent learning a sub-optimal local policy that may only work for
some anomalous sessions. To address this issue, we use a threshold
(ϵ ∈ [0, 1]) based search during our offline training. If a randomly
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generated number is greater than the threshold, then a known optimal
action will be taken; otherwise a random action will be taken. We
define ϵ as a decreasing threshold that starts with a large value (∼1)
and decreases to a smaller value with each epoch. This is represented
as ϵ = ϵend + (ϵstar t − ϵend ) exp {

−1.epoch
ϵdecay

}, where ϵstar t , ϵend ,
and ϵdecay are user defined parameters that determine the rate at
which the threshold decreases and epoch is the current iteration of
training. In this approach, the RL agent explores the state space
more often during the initial epochs of training because ϵ is a larger
value. Gradually, as ϵ decreases, the agent exploits more often. Our
experimental results show that, the above two approaches when used
together lead to fast convergence in training (Figure 4 in Section
6.2.3).

5 ALGORITHM DETAILS
In this section, we use O to denote the observation sequence and n
to denote the size of the state of the RL agent. Below, we describe
the algorithmic details of LAM.

In LAM, the RL agent is trained offline to learn the best policy
in perturbing streaming logs with minimal changes to evade the
detection by the surrogate model. The attacker then uses this policy
to make immediate decisions when performing a real-time evasion
attack against the operational anomaly detection model.

The RL agent operates in a state space, where each state consists
of n logkeys, to perturb the logkey stream. Its transition is assisted
with an observation sequence O with the past n + 1 logkeys in the
perturbed stream. Thus, at any time LAM only needs to remember
n+ 1 past logkeys in a given session. During the bootstrapping phase
when fewer than n+1 logkeys are observed, the observation sequence
O is constructed by appending a filler value −1 prior to all observed
logkeys up to a length of n + 1. The initial state s1 = O[2 : n + 1] is
given as an input to the DNN model, which contains all logkeys in
O except the first one. We use an LSTM model as our DNN because
the LSTM model can better capture the temporal correlation in time
series data than alternative DNN models such as feed forwarding
neural networks and convolutional neural networks [17]. At each
state st , the LSTM model outputs a score for each possible action
(i.e., the action-value). During the attack, the RL agent selects the
action that has the highest score without exploring other options.

Moving forward, we use an intermediate state s ′t to compute the
reward based on the action taken by the RL agent, which occurs

after an action taken by the RL agent but before the next logkey
xt+1 is observed. If the action is drop(xt ), then s ′t = O[1 : n]. If the
action is replace(xt ,x ′t ), then s ′t = O[2 : n] ◦ x

′
t where ◦ represents

the concatenation. Given an action a, the reward at time step t is
computed using the surrogate model SM , the logkey observed xt
(st [n]), and the intermediary state s ′t as follows:

rt =


1.0 if SM(s ′t ) = False & st [n] = s

′
t [n]

0.5 if SM(s ′t ) = False & st [n] , s
′
t [n]

−1.0 if SM(s ′t ) = True
(1)

SM(s ′t ) isTrue if the perturbation by the agent causes an anomaly.
The goal of the RL agent is to learn an optimal policy that maximizes
the expected reward. If the perturbation causes an anomaly, then a
negative reward of −1 is given; otherwise, a positive award is given.
Additional rewards are given when the RL agent takes no action and
no anomaly is flagged, which aims to train the RL agent to make the
least possible perturbations to maintain the imperceptibility.

At the next time step t + 1, the new state st+1 is computed from
the intermediate state s ′t and the new logkey xt+1 as st+1 = s ′t [2 :
n] ◦ xt+1. Similarly, the observation sequence O is updated as O =
s ′t ◦ xt+1.

Below, we use an example to explain the RL agent’s behavior. Sup-
pose that at time instance t = 8,O is {−1,−1,−1,x1,x2,x3,x4,x5,x6,
x7,x8}. Here n = 10, x1, . . . ,x8 are logkeys, and -1 is the filler value.
If the RL agent opts to replace x8 with x ′8, then the intermediate
state s ′8 is {−1,−1,x1,x2,x3,x4,x5,x6,x7,x ′8}. If the agent drops the
logkey x8, then s ′8 = {−1,−1,−1,x1,x2,x3,x4,x5,x6,x7}. When a
new logkey x9 arrives, the agent’s observation sequenceO is updated
as s ′8 ◦ x9 and state s9 is computed as s ′8[2 : 10] ◦ x9.

5.1 Offline Training Algorithm
Algorithm 1 gives the pseudocode for the offline training procedure
of the RL agent. In the pseudocode, we use X′ to denote all anomaly
sessions, X ′ a single anomaly session, and |X ′ | the length of X ′.

Lines 1−2 in Algorithm 1 initialize the RL agent. In each training
epoch (i.e., a loop in Line 3), the algorithm works in two stages.
First, the algorithm perturbs a randomly chosen anomaly session
(Lines 4 − 16) and then performs one training cycle (Lines 17 − 22).

The purpose of the offline training algorithm is to train an LSTM
model that can be used to predict the action value of each state-action



Procedure OfflineTraining
Data: The number of training iterations num_epoch, the

anomaly sessions X′, the decay parameters ϵstar t , ϵend
and ϵdecay , the discount factor γ , the target policy update
period M

Result: The trained model Qpolicy

1 Randomly initialize the weights of LSTM for Qpolicy

2 Qtarдet = Qpolicy

3 for epoch ∈ [1, num_epoch] do
4 Randomly pick a session X ′ ∈ X′

5 O = {−1, . . . , −1, X ′[1]}
6 s1 = O [2 : n + 1]
7 for t ∈ [1, |X ′ |] do
8 xt+1 = X ′[t + 1] or null if t == |X ′ |

9 ϵ = ϵend + (ϵstar t − ϵend ) exp {
−1.epoch
ϵdecay

}

10 if random(0..1) > ϵ then
Select an optimal action at =
arдmaxa (Qpolicy (st , a))

else
11 Randomly select an action at

end
12 Compute the intermediate state s′t
13 Compute the reward rt based on SM (s′t )
14 O = s′t ◦ xt+1
15 st+1 = s′t [2 : n] ◦ xt+1
16 Add training sample < st , at , st+1, rt > to replay

memory E
end

17 Randomly pick a subset of training samples E′ ⊂ E
18 for each training sample < st , at , st+1, rt >∈ E′ do
19 Compute action value yt = Qpolicy (st , at )
20 Compute next state action value yt+1 ={

maxa (Qtarдet (st+1, a)) if st+1 is a non-terminal state
0 otherwise

21 Compute the loss between (yt , (rt + γ · yt+1)) according
to Eq. (2)

22 Adjust weights in Qpolicy (st , at ) based on the loss
computed

end
23 if epoch % M == 0 then
24 Qtarдet = Qpolicy

end
25 return Qpolicy

Algorithm 1: Offline training of the RL agent

pair. During the attack, given a current state s, the attacker always
takes the action that results in the largest action value predicted by
the LSTM model. The LSTM model outputs a scalar action value
[36] associated with each state-action pair (s, a). Algorithm 1 trains
two LSTM models,Qpolicy andQtarдet . ModelQpolicy is returned
by the algorithm (Line 25) and is used later by the adversary in real-
time evasion attacks (see Section 5.2). We next explain the reason
for the additional model Qtarдet .

Chattering is a common issue when using DNN models within
reinforcement learning [36]. This issue implies that using a deep
learning model as a function approximator to identify the mapping

between a state and an action may not always result in stable con-
vergence of the RL agent towards learning an optimal policy. A
workaround to this problem is to instantiate two LSTM models of
the same architecture during the training time, each predicting the
action value in a given state. The target model Qtarдet acts as a ref-
erence or a target for the training objective, while the policy model
Qpolicy is updated for each training epoch. Given a state s and an ac-
tion a,Q(s,a) returns a scalar action-value whereQ is eitherQtarдet
or Qpolicy . Initially both Qtarдet and Qpolicy are initialized with
the same random weights (Line 2). In each epoch, the policy model
is trained (Lines 18 − 22) whereas the target model is left untouched.
The target model is then updated to be the same as the policy model
every M epochs where M is a user-defined variable (Lines 23 − 24).

We next explain the details of each training epoch. The agent
initializes its observation sequence O and its initial state s1 in Lines
5− 6. For each randomly selected anomaly session X ′, the algorithm
perturbs the logkeys in this session. Given the next logkey xt+1, the
agent identifies the adversarial action to take based on the threshold
ϵ , where 0 ≤ ϵ ≤ 1 (Lines 9 − 11). With probability 1 − ϵ , the agent
selects the action at associated with the maximum action-value (i.e.,
at = argmaxaQpolicy (st ,a)). With probability ϵ , the agent selects a
random perturbation action.

Afterwards, the algorithm computes the intermediate state s ′t
(Line 12) followed by calculating the reward as per Equation 1 (Line
13). Then the observation O is updated and the next state st+1 is
computed (Lines 14-15). The training sample ⟨st ,at , st+1, rt ⟩ is then
added to the replay memory (Line 16). At each training cycle, the
RL agent picks a random subset of training samples from its replay
memory to train from (Line 17). For each sample, the agent computes
the loss and updates the weights of Qpolicy (Lines 19− 22). The loss
is computed as a smooth L1 loss [15] between the current action
value yt = Qpolicy (st ,at ) and the summation of the immediate
reward obtained from the current time step and the discounted best
action value for the next time step (i.e., rt+γ ·yt+1). More specifically
the loss function is given in the following equation:

loss =

{
0.5(yt − (rt + γ · yt+1))2 if |yt − (rt + γ · yt+1)| < 1
|yt − (rt + γ · yt+1)| − 0.5 otherwise

(2)
We utilize the smooth L1 loss because it is less sensitive to outliers

than the mean squared error loss (MSELoss) and in some cases
prevents exploding gradients [15]. The action value for the next
time step yt+1 is discounted by a factor γ ∈ [0, 1], a user defined
parameter. Note that in Line 20, yt+1 is computed with respect to
the target LSTM model Qtarдet due to the chattering issue. With
the loss computed in Line 21, the weights of Qpolicy are updated
using RMSProp [37] as the optimizer in Line 22. Once the training
completes, the algorithm returns the policy model Qpolicy .

5.2 Real-time Evasion Attack
Algorithm 2 shows how LAM performs the real-time attack at time
step t . Before any logkey arrives, the observation O ′ is initialized
to be [−1,−1, ...,−1] of length n. For each incoming logkey xt ,
the algorithm updates O ′ and the current state st (Line 1). The
current state is then probed using the surrogate model SM for a
potential anomaly flag (Line 2). If an anomaly flag is not raised (i.e.



SM(st ) == False), then O ′ is updated (Line 3) and the perturber P
takes no action (Line 4). If an anomaly is likely to be flagged, an
optimal perturbation action at is identified to avoid the anomaly
(Line 5 − 8).

Procedure Attack
Data: incoming logkey xt in the session, the observation O ′

1 O ′ = O ′ ◦ xt ; st = O ′[2 : n + 1]
2 if SM (st ) == False then
3 O ′ = st
4 return ▷ No perturbation action is needed

else
5 Select action at = argmaxaQpolicy (st , a)
6 Compute the intermediate state s′t based on sequence O ′

7 O ′ = s′t
8 Perform perturbation action at
9 return

end
Algorithm 2: Real-time evasion attack

6 EVALUATION
In this section, we first describe the datasets used in our experiments
and the architectures and hyper-parametric tuning of the anomaly
detection models and the RL agent. We then present our experimental
results on attack effectiveness, speed, and imperceptibility.

6.1 Datasets and model parameters
We have evaluated LAM using two distributed system log datasets:
HDFS [42] and the system logs collected from the DATAVIEW
scientific workflow management system [22].

6.1.1 HDFS logs: HDFS is a commonly used benchmark dataset
for log based anomaly detection systems [13, 38, 46]. The dataset
contains Hadoop file system logs for map-reduce jobs on more than
200 Amazon EC2 Virtual Machines (VMs). The raw log files are
grouped into sessions based on the field block_id, where each session
is labeled for anomaly status by domain experts. The parsed dataset
contains 24,396,061 log entries from 29 logkey events amounting to
around 974, 762 sessions. We train the anomaly detection models on
a random dataset containing 8000 benign sessions.

6.1.2 DATAVIEW logs: DATAVIEW is a scientific workflow man-
agement system that runs workflows inside Amazon EC2 VMs [23].
Logs collected from DATAVIEW record the status of scientific work-
flows executed on EC2 VMs, which includes the VM provisioning
status, the communication between a local machine and a EC2 VM,
and the task execution status. The system logs contain the interleaved
execution traces of three scientific workflows, namely Ligo, Word-
Count and DiagnosisRecommendation [22]. The logs are grouped
into sessions based on the type of workflow executed. The dataset
contains synthetic anomalies due to workflow structural changes
where the workflow structure is modified to manipulate the final re-
sults. The dataset contains 14,362 log sequences generated from 104
logkey events. We train the anomaly detection models on a dataset
of 8000 benign samples.

6.1.3 Anomaly detection models: Table 2 gives the architec-
tures and the hyper-parameters used to tune the Deeplog and Au-
toEncoder anomaly detection systems. The table also contains the
true positive rate (TPr) and the false positive rate (FPr) associated
with anomaly detection. In DeepLog, the Linear Layer outputs the
conditional probabilities for all the logkeys for the next time step. In
AutoEncoder, the inputs/outputs are a one hot encoded sequence of
values equal to L ×m, where L is the number of logkeys andm is the
sliding window size.

6.1.4 RL agent architectures: Table 3 gives the architecture and
the hyper-parameters of the RL agent tuned for the whitebox attack,
in which the target model and the surrogate model are the same. In
our experiments, we maintain a replay memory E (Line 16 of Algo-
rithm 1) of 20000 samples. For all experiments, the hyper-parameters
ϵstar t , ϵend ,M , and |E ′ | in Algorithm 1 are kept at constant values
of 0.90, 0.05, 150, and 256, respectively. The training datasets for
the RL agent contain 50 anomaly sessions (i.e., |X′ |), which are ran-
domly sampled without replacement for both HDFS and DATAVIEW
datasets.

In the whitebox attack, the attacker has direct access to the anom-
aly detection models trained. In the graybox attack, we train a surro-
gate model separately, which has the same architecture and hyper-
parameters as the target model, but different training weights (which
are randomly initialized). In the blackbox attack, when attacking
DeepLog, we use AutoEncoder as the surrogate model. When at-
tacking AutoEncoder, the surrogate model is DeepLog.

6.2 Experimental results
This section presents the experimental results of LAM. All exper-
imental results pertaining to the real-time attack effectiveness, the
attack imperceptibility, and the attack speed (shown in Figure 3 and
Table 4) were obtained on a dual two-core 3.30 GHz Intel Xeon
machine with 8 GB memory. The pre-trained deep learning models
were used in all experiments. The deep learning models were trained
and tuned on a 2.3-3.7 GHz Intel Xeon Gold 6140 machine with
NVIDIA Tesla P100 12GB GPU.

6.2.1 Attack effectiveness: Figure 3 shows the effectiveness of
LAM on DeepLog and AutoEncoder. Figure 3(a) gives the true posi-
tive rate of LAM on the HDFS dataset. The figure shows that, for the
whitebox attack, the true positive rate of DeepLog and AutoEncoder
is reduced by approximately 80% and 60%, respectively. For the
DATAVIEW dataset (Figure 3(b)), we observe a drop of 100% in
the true positive rate with DeepLog and a reduction of around 87%
with AutoEncoder. As expected, the whitebox attack demonstrates
the greatest damage to the anomaly detection capability of the two
models, with an average of around 89.9% for DeepLog and 73.5% for
AutoEncoder.

We study the transferability of LAM via graybox and blackbox
attack scenarios. Transferability means the likelihood of success for
an indirect attack by using a different model as the target. LAM
succeeds in evading anomaly detection in the graybox attack, but
not to the same degree as the whitebox attack. This is because,
even though both the target and the surrogate models have superior
anomaly detection capability, their internal model parameters are
not the same. As the two models may raise anomalies at different



Datasets Models Architecture Hyper-Parameters TPr FPr

HDFS DeepLog
LSTM(#weights = 64, #layers = 2),
Linear(64×29)

sliding window (m) = 10,
learning rate = 0.01,
# of candidates (д) = 9

0.9066 0.0023

AutoEncoder

Encoder:
Linear(290×256),
Linear(256×128),
Linear(128×64),
Linear(64×32)

Decoder:
Linear(32×64),
Linear(64×128),
Linear(128×256),
Linear(256×290)

sliding window (m) = 10,
learning rate = 0.01,
threshold (θ ) = 0.1

0.9997 0.0019

DATAVIEW
DeepLog

LSTM(#weights = 128, #layers = 2),
Linear(128×104)

sliding window (m) = 10,
learning rate = 0.01,
# of candidates (д) = 17

1.0000 0.0224

AutoEncoder

Encoder:
Linear(1040×1024),
Linear(1024×512)

Decoder:
Linear(512×1024),
Linear(1024×1040)

sliding window (m) = 10,
learning rate = 0.01,
threshold (θ ) = 0.2

1.0000 0.0613

Table 2: Anomaly detection model architectures

Datasets &
Models RL agent Architecture Hyper-Parameters

HDFS

DeepLog
LSTM(#w = 128, #l = 4),
Linear(128×30)

state size (n) = 11
γ = 0.85
ϵdecay = 2000

AutoEncoder
LSTM(#w = 256, #l = 4),
Linear(256×30)

state size (n) = 10
γ = 0.85
ϵdecay = 3000

DATAVIEW

DeepLog
LSTM(#w = 128, #l = 4),
Linear(128×105)

state size (n) = 11
γ = 0.85
ϵdecay = 3000

AutoEncoder
LSTM(#w = 128, #l = 4),
Linear(128×105)

state size (n) = 10
γ = 0.95
ϵdecay = 3000

Table 3: The architecture and hyper-parameters of tuned RL
agent where #w and #l represent the number of weights and
layers in the LSTM module, respectively

locations in the same session, anomalies detected by the target model
may not always be masked by LAM which uses a different surrogate
model to decide which logkeys should be perturbed. Figure 3(a)
shows that, for the HDFS dataset, the graybox attack reduces the
true positive rate of DeepLog from 91% to 41% and AutoEncoder
from 99% to 52%. For the DATAVIEW dataset, the graybox attack
performs as well as the whitebox attack, as shown in Figure 3(b).

The blackbox attack is the hardest of the three types of attacks,
as evidenced by the least decreases in the true positive rates for all

(a) HDFS

(b) DATAVIEW

Figure 3: Attack effectiveness of LAM



Datasets Attacked Models
Real-Time
Responsiveness
(Time for a
single attack)

Attack Imperceptibility
Average
#Modifications
per Session

Average
Session
Length

Modified
Percentage

HDFS
DeepLog 0.65ms 1.58 25.28 6.24 %
AutoEncoder 0.23ms 3.10 25.28 12.27 %

DATAVIEW
DeepLog 0.62ms 3.15 36.85 8.55 %
AutoEncoder 0.37ms 4.64 36.85 12.59 %

Table 4: Properties of real-time adversarial attack

the cases in Figure 3. Interestingly, the figure shows that the black-
box attacks targeting the AutoEncoder model with DeepLog as the
surrogate model are more transferable than those in the opposite
direction. Figure 3(a) shows that the blackbox attack reduces the
true positive rate of the AutoEncoder model by 45.9% for the HDFS
dataset, whereas the reduction for the DeepLog model is only 17.3%.
We see a similar trend in Figure 3(b), which shows a larger drop
in the anomaly detection accuracy when targeting the AutoEncoder
(73.3%) as opposed to the DeepLog (33.3%). The above results indi-
cate that the attacks generated with DeepLog as the surrogate model
are more transferable than those using AutoEncoder.
6.2.2 Attack speed and imperceptibility: Table 4 shows the
real-time responsiveness and attack imperceptibility of LAM. We
observe from the table that the speed of perturbing one logkey is fast
irrespective of the datasets used, which is about 0.63ms for DeepLog
and 0.29ms for AutoEncoder. Regarding attack imperceptibility, for
a single session in HDFS that contains around 25 logkeys, on average
LAM changes 1.5 and 3.1 logkeys when attacking DeepLog and Au-
toEncoder, respectively. We see a similar trend for the DATAVIEW
experiments. Our experimental results show that AutoEncoder is
more robust against our attacks. When considering all dataset and
model combinations, LAM perturbs around 9.9% logkeys on average
to evade anomaly detection.

To illustrate the real-time effectiveness of LAM, we experiment
with attacking sessions of logkeys using a brute force search algo-
rithm assisted by the surrogate model. For each session, the surrogate
model is used to identify the attack entry points. Once an anomaly
is identified by the surrogate model, a brute force search is per-
formed to traverse through all possible transitions until an action
that results in fooling the surrogate model is observed. Unlike LAM,
the brute force search needs to probe the surrogate model at each
iteration to ensure that an adversarial action does not result in any
anomaly flag raised throughout the entire observed session. In the
worst case, the total number of searches required for each iteration
can be exponentially large, i.e., Ln where L is the total number of
logkeys and n is the size of the state. For example, when DeepLog
is used as the surrogate model, the state size for the HDFS dataset is
2911 and the state size for the DATAVIEW dataset is 10411. In our
experiment, we attacked 20 randomly selected sessions from both
the HDFS and the DATAVIEW datasets where the surrogate model
is DeepLog. Given that the search time of LAM is bounded by an
order of seconds, we consider an upper limit of 24 hours as the total
search time for a single session using the brute force search. The
brute force search is terminated if the search time exceeds 24 hours.
Our experimental results show that the average time for attacking
a single session in HDFS and DATAVIEW datasets using the brute

force search is 12.87 hours and 17.03 hours respectively. Consider-
ing an attack on the whole session, this is approximately 2.8 × 106
times slower than LAM, which illustrates the gains in speed during
the attack phase using the RL agent. Overall, the brute force search
perturbs approximately 30.4% logkeys. We expect similar results for
brute force search when the surrogate model is the AutoEncoder.

6.2.3 Convergence in training: Figure 4 shows the convergence
of the average reward per session obtained by the RL agent during
the training phase for the first 500 epochs. The average reward
obtained per session is plotted with respect to the training progress
for the models with parameters mentioned in Table 3.

The maximum reward an agent can obtain in each session is the
number of logkeys in the session. On average, each session in HDFS
and DATAVIEW contains around 25 and 36 logkeys, respectively.
In both datasets, the reward is negative at the beginning. This is
because, at the beginning, the perturber is not able to create adversar-
ial modifications that fool the surrogate model. However, it quickly
rises to a positive value and fluctuates slightly below 25 and 36 as
shown in Figures 4(a) and 4(b). The reason behind the sudden rise is
that at each epoch, the perturber trains on a batch of training samples
stored in its replay memory. Additionally, we observe that the RL
agent obtained higher reward for DeepLog than for AutoEncoder.
This also implies that the RL agent learns to attack DeepLog more
successfully than AutoEncoder.

6.2.4 Hyper-parametric tuning: In this section, we provide in-
sights on hyper-parametric tuning for our real-time adversarial attack
method. Due to the space constraint, we present only results from
tuning the attack against DeepLog on the HDFS dataset. We observe
similar trends for other model-dataset combinations. Figure 5 shows
the true positive rate for varied values of γ , the hyper-parameter used
for calculating the loss and for varied architectural changes in the
LSTM model (see Eq. (2)). As shown in Figure 5, the attack is more
successful when γ increases, irrespective of the internal architecture
of the LSTM component. This is in line with many standard RL
agent tuning tasks where higher values of γ ∈ [0.8, 1] seem to have
better results. However, we note that once the RL agent achieves a
stable state (#layers = 4, #weights = 128), there is no visible change
even when γ increases further.

We make similar observations for ϵdecay (Line 9 in Algorithm 1),
where a substantially larger value (i.e., around 2000 or 3000) yields
better results. This is also expected as larger ϵdecay enables the RL
agent to explore the search space more often, thus circumventing
the issue of getting stuck at a local optima to a higher degree. We
note an interesting pattern with regards to selecting the optimal
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Figure 4: Convergence in training for the RL agent

Figure 5: Impact of parametric change on attack performance
for γ = [0.80, 0.85, 0.90]

architecture for the LSTM component. As seen in Figure 5, models
with less depth (i.e., #layers = 2) are not able to successfully make
adversarial attacks. As the size of the model increases, either through
the number of stacked layers or the number of weights used, we note
a greater reduction in the true positive rate. However, at a certain

point (#layers = 4, #weights = 256 for HDFS + DeepLog), we see
a sudden increase in the true positive rate. We see similar trends
for the DATAVIEW dataset and the AutoEncoder model, where the
true positive rate decreases and then increases with an increasing
model size, albeit at different points. Therefore, our rule of thumb
for hyper-parameter tuning is to initially start with a smaller model
(i.e., #layers = 2, #weights = 64) and then double it at each step until
the true positive rate rebounds from a bottom value.

7 DISCUSSIONS
In this section we discuss how to extend LAM for attacking raw log
streams directly as well as potential defense schemes.

Extension to attacking raw log streams: Our approach consid-
ers logkeys as the input to the anomaly detection model for transmis-
sion efficiency. The method can be extended to scenarios where raw
log entries are transmitted over the network and fed to the anomaly
detection system directly, which parses them into logkeys for further
anomaly detection. In the attack, the attacker can intercept raw log
entries, convert them to logkeys, use LAM to optimize perturbations,
and finally translate the modified logkeys back to raw log entries.
As the parameter values are discarded for logkey anomaly detection
upon parsing, the attacker can then manipulate the raw logs by inter-
cepting and replacing individual log entries with valid text templates
associated with the mapped logkeys.

Potential Defensive Approaches: Below, we discuss potential
defense mechanisms against LAM. As LAM relies on interception
and modification of the logkey stream fed to the anomaly detection
module, it is possible to prevent the attack by ensuring the integrity
of the logkeys during their transmissions from their collection sites
to the machine where anomaly detection is performed. However, a
few technical challenges are involved here. First, a trusted path must
be established from the place where the raw logs are generated to
the anomaly detection module. For example, a common practice in
distributed systems is that data transmissions are secured between
two machines (e.g., using the popular scp utility). This may not be
sufficient because the adversary may run malware on the machine
collecting raw logs to modify the logkeys before their transmissions
or on the machine executing the anomaly detection model after the
logkeys are received. Second, although an application-level end-to-
end security protection scheme can be deployed to prevent tampering
of logkeys needed by the LAM attack, it introduces extra overhead
and complexity to key management in a distributed system where
other keys are also needed at the infrastructure level (e.g., Kerberos
for Hadoop). The co-existence of multiple sets of unrelated keys in
the same distributed system renders it difficult to reason about trust
relationships across different components.

Another potential defense strategy is to increase the adversarial
robustness by leveraging the disparity in transferability. Our experi-
mental results show that although LAM is able to transfer attacks
across different model architectures, the blackbox attack has the least
success rate. Instead of utilizing one operational anomaly detection
model, it is possible to deploy an ensemble of anomaly detection
models within the anomaly detection system. For each session, one
of the models within the ensemble is randomly chosen for the pur-
pose of detecting anomalies. If the model chosen is different from
the surrogate model, then the attack success rate will be less than



an optimal whitebox scenario. From a defensive position, the de-
fender must ensure that all models within the ensemble are trained
adequately such that they all have reasonable anomaly detection
capability, which could be computationally intensive.

From an attacker’s perspective, LAM can be used to attack even
with this defense in place. If the attacker knows that an anomaly
model ensemble is used, then the entire ensemble itself can be used
as a group of surrogate models during the training phase. For each
training iteration, one of the models within the ensemble can be
chosen to derive the reward of the RL agent. This would ensure that
LAM learns to fool multiple model architectures at the same time.
However, this opens a possible question with respect to achieving
stable convergence during training, because each training iteration
could be anchored on a different surrogate model. This also opens
the question of identifying attack entry points within the session, be-
cause different models may identify anomalies at different sequential
points in the stream. It is worth noting that adversarial attacks and
defences form a kind of cat and mouse game, where one party may
triumph over the other depending on the information available to
the other party. We leave the investigation of this potential defensive
strategy and how LAM may fair against them as future work.

8 RELATED WORK
In this section we survey the related works on log-based anomaly
detection and adversarmail machine learning attacks.

8.1 Log-based anomaly detection
There have been a number of attempts at identifying malicious behav-
iors from computer system logs (e.g., [7, 9, 21]). Machine learning
based system log anomaly detection can be broadly classified as
supervised, unsupervised, and deep learning based methods. The
work in [21] provides a comparison between existing supervised
and unsupervised machine learning based system log anomaly detec-
tion models. Support Vector Machines (SVM) [25], Decision Tree
based methods [10], and data mining techniques such as MapRe-
duce [6] have been used as supervised machine learning methods
to detect anomalies based on system logs. Unlike supervised meth-
ods, unsupervised techniques have the advantage of not needing a
labeled dataset at its learning stage. LogCluster [26] is one such
unsupervised model that uses clustering based techniques to de-
tect anomalous events by generating clusters for normal/abnormal
samples. Other unsupervised machine learning techniques include
Statistical methods such as Principal Component Analysis (PCA)
[42] that operate by reducing a high dimensional data space to a
lower dimension, and techniques such as Invariant Mining [28] that
identify common linear relationships in benign log sessions and use
them to flag anomalies.

Recently, Deep Learning based models have been used for anom-
aly detection with great success [9]. DeepLog [13] uses the LSTM
model to learn the conditional probabilities of log sequences and
raises an anomaly flag whenever newly arrived logs are not predicted
by the model. Desh [11] uses LSTM to predict the lead time for fu-
ture node failure in HPC logs. Researchers have also proposed to
combine the LSTM architecture with the attention mechanism [8, 46]
to provide an additional level of interpretability for root causes of
anomalies identified in system logs. AutoEncoders have also been

widely used for anomaly detection (e.g., [4, 5, 19, 34]). In recent
years, there have been models constructed by combining AutoEn-
coder models with LSTM [18], where the AutoEncoder is used to
identify a hidden representation of the data, which is then given
as the input to an LSTM model to detect anomalies. As anomalies
occur sparingly, a common problem plaguing anomaly detection is
the imbalance between benign and abnormal training samples. To
address this issue, Generative Adversarial Networks (GANs) have
been used to improve anomaly detection models [38].

8.2 Adversarial machine learning attacks
Although Deep Learning models have achieved superior perfor-
mance in many areas, there have been successful attempts at mis-
leading many DNNs at test time by carefully crafting input sam-
ples [3]. Some of the existing adversarial attacks are summarized
in [40, 43]. Although many attacks were initially proposed in the
domain of image classification [1, 27, 40], some recent works have
focused on generating adversarial examples targeting text-based
NLP domains [2, 45]. Many existing evasion attacks generate adver-
sarial samples in an offline manner [40, 43, 45]. LAM, in contrast,
is aimed at real-time evasion of anomaly detection systems. More-
over, attacks targeting NLP applications operate on character/word
modifications and do not work well for system logs that have stricter
syntactical structure. In addition, newly proposed systems such as
LogRobust [46] can successfully parse unstable raw logs, which
further reduces the effectiveness of previous attacks.

Recently, there have been some works on creating real-time ad-
versarial attacks. CAG (Content-Aware Adversarial Attack Gener-
ator) [30] is one such attack that uses a generative model in the
form of U-Net [33] to make adversarial perturbations to images.
GAP (Generative Adversarial Perturbations) [31] is another similar
image-based generative model that uses a ResNet model within its
architecture. Li et al. [24] propose to use an offline-trained fixed
discriminator and a generator that is trained to create adversarial
perturbations against the discriminator for real-time video classifica-
tion. The work in [14] introduces an evasion attack against anomaly
detection in cyber-physical systems. These previous efforts use gen-
erative models to craft adversarial samples, which differ from the
reinforcement learning approach developed in our work. Xie et al.
[39] propose an attack against speech recognition by generating uni-
versal perturbations from repeated playback of fixed-length universal
noise.The adversarial attacks proposed by Gong et al. [16] targeting
speech recognition models the attack generator as a RL agent. Their
approach modifies speech patterns based on imitation of pre-exiting
attack trajectories performed by offline attack models. Our approach,
in contrast, does not require any pre-known adversarial attacks on
anomaly detection models. To the best of our knowledge, there are
no adversarial evasion attacks against deep learning based anomaly
detection on distributed system logs.

9 CONCLUSION
In this paper, we propose LAM, a real-time evasion attack that
perturbs streaming logs in distributed systems with minimal mod-
ifications to evade anomaly detection. LAM models the perturber
as a reinforcement learning agent that operates in a partially observ-
able environment. The RL agent is trained offline using a surrogate



model to predict the best perturbation action from its observations
made in the current environment and then uses this prediction to
make immediate decisions during the attack. Our experimental re-
sults show that LAM significantly reduces the true positive rate of
DeepLog and AutoEncoder while achieving attack imperceptibility
and real-time responsiveness. In future, we plan to extend LAM to
consider both logkeys and parameter values and investigate further
defense mechanisms against LAM.
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